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Abstract
The magnetic Brillouin scattering of arrays of permalloy stripes with rectangular
29 nm × L cross section (L = 500, 1000, 1500 nm) is studied versus the
amplitude and the direction of the applied magnetic field and of the transferred
wavevector. A simple model provides a satisfactory agreement of the full set
of experimental results: each stripe is viewed as a continuous film showing
an in-plane anisotropy due to the demagnetizing effects induced by lateral
surfaces. We introduce an anisotropy field Ha = aM , where M stands for
the magnetization and where the coefficient a can be evaluated directly, at
least approximately. In addition, we give an account of the previously studied
magnetic mode quantization and of the observed variations in the Stokes/anti-
Stokes asymmetry in patterned arrays as well as in continuous films.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In recent years many theoretical, numerical and experimental studies concerning spin waves
in magnetic stripes have been performed [1–18]. Among the experimental techniques,
propagating spin wave spectroscopy and Brillouin light scattering (BLS) are particularly
interesting, since they can provide information about the frequency dispersion, the group
velocity and the damping of magnetic excitations versus their wavevector. In the following,
we present a Brillouin study of spin waves in arrays of permalloy thin stripes using various
geometrical configurations for the direction of the applied magnetic field H and of the
transferred in-plane wavevector Q involved in the scattering of light. We show that a rather
simple approximate model quite satisfactorily gives account of the observed results. It derives
from the well-known calculations related to continuous magnetic infinite thin films: the stripe
structure introduces an effective anisotropy energy term connected to demagnetizing effects
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and a wavevector quantization. Some consequences of this behaviour have been described
previously: for instance, when H is applied along the stripes with Q perpendicular to H, one is
faced with a quantization deduced from the dispersion of a continuous thin film for the pseudo-
Damon–Eshbach configuration assuming values of the wavevector nearly equal to nπ/L, where
n stands for any positive integer and where L is the width of the stripes.

2. Experimental details

2.1. Studied samples

Different arrays of stripes originating from a unique continuous permalloy film were elaborated.
The study of this continuous film provides a set of magnetic characteristic quantities:
magnetization M , gyromagnetic factor γ , and exchange stiffness parameter A. These quantities
are assumed to be unaffected by the patterning which gives rise to the arrays of stripes. This
control film of thickness d = 29 nm was obtained by RF sputtering on a silicon substrate.
The patterning, which uses a technique combining electron beam lithography and ion beam
sputtering, has been described previously [19]. Three series of arrays of parallel stripes,
separated by a 300 nm interval, were prepared with a width, L, of 500, 1000 and 1500 nm,
respectively.

2.2. Brillouin spectra

The polarized magnetic Brillouin spectra were achieved using a tandem 2 × 3 Fabry–Perot
interferometer illuminated by a single-mode Ar+ ion laser at a wavelength of � = 514.5 nm
using a power of 200 mW or less. Backscattering geometry was used, with an angle of
incidence θ that could be varied, thus allowing us to monitor the wavevector transfer Q =
4π sin[θ ]/�. The variations in the spectra versus the in-plane applied magnetic field were
also studied for various geometrical configurations (e.g. H ⊥ Q,Q ⊥ stripes; H ⊥ Q,
Q ‖ stripes; H ‖ Q, Q ⊥ stripes).

3. Results and discussion

3.1. Continuous film

In the so-called ‘Damon–Eshbach’ geometry (H ⊥ Q), the calculation of the spin wave
frequencies and of the resulting shape of the Brillouin spectra is a well-known problem [20–23]
and, in principle, allows us to fit the magnetic parameters. We have extended this calculation
without any major difficulty to other geometrical arrangements, in particular to the so-called
‘backward’ geometry (H ‖ Q). Figures 1(a) and (b) provide an example of such fits for the two
above-mentioned situations. It is of interest to notice that the well-known Stokes/anti-Stokes
asymmetry appearing in the ‘Damon–Eshbach’ spectra is absent in the ‘backward’ ones.

Practically, the fits are derived from the frequency variations of the observed lines versus
the magnetic field and versus the angle of incidence. In addition to M, γ and A, a perpendicular
anisotropy related to interfacial energy is often reported. However, the experimental accuracy
and the neglected damping effects do not allow a separate evaluation of 4πM and of the
anisotropy field Han and we can only determine (4πM − Han). Our best fits, illustrated in
figures 2(a)–(c), lead to A = 1 × 10−6 erg cm−1, γ = 1.87 × 107 Hz G−1, (4πM − Han) =
7600 G. In bulk permalloy, 4πM approaches 10 000 G; keeping this value for the thin film
would results in an anisotropy field of a few kOe. However, in order to simplify the following
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Figure 1. Examples of calculated Brillouin spectra compared to experimental results for a
continuous permalloy layer in DE geometry (H ‖ M ⊥ Q: (a)) and in BW geometry (H ‖ M ‖ Q:
(b)). Dashed lines: calculated spectra; full lines: experimental spectra. The calculations use:
4πM = 7600 G; γ = 1.87 × 107 Hz G−1; A = 1 × 10−6 erg cm−1; d = 29 nm; H = 1000 Oe
(angles of incidence: θ = 45◦ in (a); θ = 36◦ in (b)).

presentation, we shall state that 4πM = 7600 G, keeping in mind that M stands for an effective
magnetization (sometimes called Meff [24, 25]) giving account of the spin wave behaviour.

Due to the small thickness of the film, the dipolar mode is well separated from the other
magnetic excitations (standing spin waves) and, when one focuses on the Brillouin spectra,
its properties can be treated separately from the other modes, using a model introduced by
Stamps and Hillebrands [26] and extended by Stamps [27] for the study of thin samples. This
derives from the approximate linear equations monitoring the mean amplitude of the oscillatory
magnetization calculated over the sample thickness. It provides explicit expressions for the spin
wave frequencies, namely:

(
ω

γ

)2

=
(

8πM

Qd + 2
+ H + 2AQ2

M

) (
4πM Qd

Qd + 2
+H + 2AQ2

M

)

for the ‘Damon–Eshbach’ geometry (1)
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Figure 2. Best fit for the observed Brillouin frequency variations in a continuous permalloy
layer: (a) versus the magnetic field in the DE geometry; (b) versus the magnetic field in the BW
geometry; (c) versus the angle of incidence in the DE geometry. Full lines: calculated variations
with 4πM = 7600 G, γ = 1.87 × 107 Hz G−1, A = 1 × 10−6 erg cm−1. Points: experimental
values.
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(
ω

γ

)2

=
(

8πM

Qd + 2
+ H + 2AQ2

M

) (
H + 2AQ2

M

)

for the ‘backward’ geometry. (2)

We have verified that the above expressions and the complete calculation provide the same
frequency values within the experimental precision interval (0.1 GHz).

3.2. Arrays of stripes

The film patterning induces two consequences: (i) an in-plane anisotropy, presumably mainly
related to the demagnetizing effects related to the occurrence of lateral surfaces; (ii) a
quantization of the allowed wavevector related to restrictions in the translational invariance.
For a complete description of the propagative spin waves, numerical calculation are needed:
such an approach concerning a unique isolated stripe has previously been presented [11]. Its
generalization to an infinite array is relatively heavy; on the other hand, it only provides poor
insight of the physical modifications induced by the patterning. The situation can be simplified
significantly assuming that each stripe suffers an additional anisotropy energy density term
which, in first approximation, is written as aM2

x /2, where a is some constant to adjust that
depends on the geometrical arrangement of the studied array and where Mx stands for the
in-plane component of the magnetization perpendicular to the direction of the stripe. The
quantity aM can be viewed as an anisotropy field, and it is realistic to attempt to identify
aMx with an effective mean demagnetizing field. The evaluation of the demagnetizing field
is straightforward if the magnetization is supposed to be uniform in the stripe: numerical
calculations, using for instance the OOMMF program [28], show that this approximation of
a uniform magnetization is reasonably good in view of the geometrical characteristics and of
the applied fields used. Indeed, the demagnetizing field is not uniform inside a stripe: the
appropriate effective demagnetizing field cannot be derived easily and, in the following, will
be considered as an adjustable parameter. Two limits can be regarded: (i) the first one uses the
value of the demagnetizing field at the centre of each stripe; it underestimates the parameter a,
since it nearly corresponds to the minimum value of the demagnetizing field inside the stripe.
This provides: a = 0.31, 0.11 and 0.06 for stripe widths 500, 1000 and 1500 nm, respectively;
(ii) the second one uses the mean value of the demagnetizing field calculated over the full cross
section of each stripe; it presumably overestimates the parameter a, since it is considerably
influenced by the large values of the magnetizing field in the immediate vicinity of the lateral
surface, which is a region that cannot satisfactorily describe the studied pseudo-dipolar modes.
This provides: a = 0.84, 0.44, 0.29 for the stripe widths 500, 1000 and 1500 nm, respectively.

Using this model, the static magnetization of each stripe is easily found by minimizing a
term of energy density, which can be written as:

E0 = −H · M + aM2
x

2
. (3)

Among the above-mentioned cases studied, two very different situations have to be considered:

(i) H ‖ stripes (z axis): the magnetization remains along H; for |H | > Ha = aM , H and M
keep the same direction; for |H | < Ha, hysteresis effects can occur [12, 15].

(ii) H ⊥ z: M lies along H only for |H | � Ha; for |H | < Ha, the orientation of M corresponds
to an ‘oblique’ phase (Mx = M(H/Ha)). A spin wave softening around the transition field
Ha is then expected for specific directions of the wavevector [9, 11, 16].

Notice that, strictly speaking, for other directions a residual obliquity remains, whatever the
value of the applied field.
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Figure 3. Experimental evidence for frequency softening in the (H ⊥ z,H ‖ Q) geometry for
three arrays of stripes: L = 500 nm (points), 1000 nm (crosses) and 1500 nm (squares). Angle of
incidence: θ = 30◦.

In figure 3, we have reported the frequency variations versus the field for H ⊥ z, as
observed in the ‘backward geometry’ (Q ‖ H) for the three stripe widths studied: a softening
clearly appears. To interpret this behaviour we use the same approach as in the preceding
section, but adding the term aM2

x /2 to the energy density. This model provides the following
expressions for the frequency:

(
ω

γ

)2

=
(

8πM

Qd + 2
+ 2AQ2

M

) (
4πM Qd

Qd + 2

(
1 − H 2

H 2
a

)

+ 2AQ2

M
+ Ha

(
1 − H 2

H 2
a

))
for H < Ha (4)

(
ω

γ

)2

=
(

8πM

Qd + 2
+ 2AQ2

M
+ H − Ha

)(
H + 2AQ2

M
− Ha

)
for H > Ha. (5)

This results in a softening for H = Ha. However, due to the exchange contribution, the
frequency does not completely vanish for H = Ha. In figure 4, we show typical Brillouin
spectra obtained in the oblique phase (H < Ha) and in the aligned phase (H > Ha): the
Stokes/anti-Stokes asymmetry is absent for the aligned case, which is reminiscent of the
‘backward’ geometry, as is expected since the magnetization is parallel to the transferred
wavevector Q. In contrast, for H < Ha, a significant asymmetry is observed, due to the
misalignment between M and Q, which is similar to the asymmetry obtained with thin films
studied in the ‘Damon–Eschbach’ geometry.

In figure 5, we have reported the frequency variations versus the field for H ⊥ z, as
observed in the ‘Damon–Eshbach’ geometry (Q ⊥ H) for the stripes of width 1000 nm:
softening does not appear, but a change in slope is observed at H = Ha, in agreement with
the predictions of the model, which provides the expressions:

(
ω

γ

)2

=
(

8πM

Qd + 2
+ 2AQ2

M

) ((
4πM Qd

Qd + 2
− Ha

)
H 2

H 2
a

+ Ha + 2AQ2

M

)

for H < Ha (6)
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Figure 4. Two typical Brillouin spectra in the (H ⊥ z,H ‖ Q) geometry, obtained with H below (a)
and above (b) Ha: (a) H = 0; (b) H = 500 Oe.

(
ω

γ

)2

=
(

8πM

Qd + 2
+ H + 2AQ2

M
− Ha

)(
4πM Qd

Qd + 2
+ H + 2AQ2

M
− Ha

)

for H > Ha. (7)

Notice that, when H = 0, the non-vanishing of the frequency is related to the dynamical part
of the anisotropy field.

In figure 5, we also show the frequency variations versus the field for H ‖ z, as observed
in the ‘Damon–Eshbach’ geometry (Q ⊥ H) for stripes of width 1000 nm. The expected
frequency is given by:

(
ω

γ

)2

=
(

8πM

Qd + 2
+ H + 2AQ2

M

) (
4πM Qd

Qd + 2
+ H + 2AQ2

M
+ Ha

)
. (8)

In figure 6, we compare the experimental spectra for the stripes of width 1000 nm to the studied
model for the three geometrical arrangements: the best fit is obtained for Ha = 180 Oe; this
result corresponds to a = 0.298 and then lies within the above-mentioned interval [0.11, 0.44].
In figure 7, we present the obtained fits for the 500 nm and the 1500 nm widths: we find
a = 0.600 and 0.22, which, as expected, lie in the [0.31, 0.84] and the [0.06, 0.29] intervals,
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Figure 5. Frequency variations versus H in the (H ⊥ z, H ⊥ Q) geometry (crosses) and in the
(H ‖ z,H ⊥ Q) geometry (points). L = 1000 nm and θ = 65◦.
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Figure 6. Best fit for the observed Brillouin frequency variations in an array of stripes (L =
1000 nm) in three configurations: (i) (H ⊥ z,H ‖ Q); calculation: dashed line, experimental:
squares; (ii) (H ⊥ z,H ⊥ Q); calculation: full line, experimental: crosses; (iii) (H ‖ z, H ⊥ Q);
calculation: dot–dashed line, experimental: points. Calculated variations with a = 0.298 (and
4πM = 7600 G, γ = 1.87 × 107 Hz G−1, A = 1 × 10−6 erg cm−1).

respectively. In addition to the above-discussed results, we performed various studies with
different angles of incidence: all the obtained spectra agree with the proposed model.

Let us now discuss the quantization effects that were not accounted for above: due to
the experimental precision and to the broadness of the observed Brillouin lines, these can be
observed for Q perpendicular to the stripes, at small Q values only, i.e. at small angles of
incidence, an experimental situation which was not discussed in the preceding part of this paper.
In contrast, quantization effects were studied previously in the same arrays of stripes [4]. In
the dipolar approximation we came to the conclusion that the usual expression for continuous
films: (

ω

γ

)2

= (H + 2πM)2 − (2πM)2 exp[−2Qd] (9)
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Figure 7. Best fit for the observed Brillouin frequency variations in arrays of stripes with L = 500
and 1500 nm in the (H ⊥ z, H ‖ Q) geometry: (i) L = 500 nm; calculation with a = 0.600: dashed
line, experimental: crosses; (ii) L = 1500 nm; calculation with a = 0.220: full line, experimental:
points.

could be used, assuming a quantization of the wavevector Qn = (n + β)π/L, with n =
0, 1, 2, 3 . . . and β = 2/3. In our opinion, the anisotropy related to the demagnetizing lateral
surfaces, which was not taken into account in our previous publication, is responsible of the
parameter β . Expression (8), with a quantized values of the wavevector Q′

n = nπ/L, is nearly
equivalent to expression (9) using the wavevector:

Qn = n
π

L
+ (4πM + H )

8π2 M2

Ha

d
(10)

(restricting us to a development to the first order). For the case studied, H can be neglected in
expression (10), which becomes:

Qn = n
π

L
+ Ha

2πMd
. (11)

The above-mentioned parameter a is then given by:

a = 2π2 d

L
β. (12)

One finds a = 0.76, 0.38 and 0.25 for the widths 500, 1000 and 1500 nm, respectively.
These values lie in the appropriate above-calculated intervals. They are slightly higher than
the experimental ones reported in the present study (0.600, 0.298 and 0.22, respectively).
Nevertheless, the fitting conditions were not the same: we did not introduce the exchange
terms for the analysis of the quantized modes.

4. Conclusion

We have developed a simple model for the spin wave excitations in an array of magnetic stripes.
In this model, a stripe is replaced by an ‘ad hoc’ infinite thin film described with the help of an
in-plane anisotropy term: this term originates from the demagnetizing effects due to the lateral
surfaces, which can be evaluated approximately. In our calculations, we also assume small
relative variations in the dynamic magnetization along the direction of the thickness: we then
exclude the study of the surface standing waves (SSW) related to the stripes. Moreover, this

9
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model, which introduces a uniform effective static demagnetizing field, cannot give an account
of magnetic modes confined near the edges of the stripes [7, 8]: these latter excitations present
distinct behaviours, showing, for instance, softening near specific magnetic fields [11, 16].

In spite of the above restrictions, our method provides a satisfactory description of the
observed magnetic Brillouin spectra of different arrays of magnetic stripes studied with a large
variety of geometrical arrangements and of applied magnetic fields.

This method can be used in many experimental situations. The only requirements are: (i)
that the static magnetic quantities are uniform; (ii) that the dynamic quantity slightly varies
over the thickness. There is no need to assume any given profile of the dynamic magnetization.
The form of the energy density can be modified and includes additional terms of anisotropy
and/or bias interfacial exchange.

Appendix. Expression of the spin wave frequencies

A thin stripe is regarded as an infinite layer showing anisotropy induced by the demagnetizing
field: assuming a uniform in-plane static magnetization of amplitude M , its direction is
obtained by minimizing the following energy density term:

E = −Hx Mx − Hz Mz + HaM2
x /2M with M2

x + M2
z = M2 (A.1)

where z labels the direction along the stripe, and x defines the direction of its width. Ha = aM
can be estimated from the demagnetizing field calculated for a lattice of stripes saturated along
its hard in-plane axis (see main text above).

The conditions of minimization can be written:

Hx − HaMx/M = λMx , Hz = λMz with: M2
x + M2

z = M2. (A.2)

(i) If Hz �= 0, λ is obtained through the relation:

(Hz/λ)
2 + (Hx/(λ+ Ha/M))2 = M2. (A.3)

(ii) If Hz = 0, then λMz = 0:

either Hx < Ha and λ = 0, or Hx > Ha and Mz = 0. (A.4)

The dynamical magnetization and, consequently, its averaged value 〈m〉 over the film
thickness, is governed by the Landau–Lifshift equation, which provides:

i(ω/γ )〈m〉 = M × 〈heff〉 + 〈m〉 × Heff (A.5)

where 〈heff〉 is the averaged dynamic magnetic field and where Heff = λM; ω is the radial
frequency.

We will show below that the frequency of a propagating eigenmode of wavevector Q =
Qx x + Qzz of amplitude Q is obtained using the relation:

(ω/γ )2 = (8π/(Qd + 2)+ λ+ 2AQ2/M2)(4πd(Qx Mz − Qz Mx )
2/(Q(Qd + 2))

+ (λ+ 2AQ2/M2)M2 + M2
z Ha/M) (A.6)

where d is the thickness of the film and where A is the exchange stiffness. Expression (A.6)
reduces to equations (4)–(8) related to the geometrical arrangements described in the main text.

The proof of equation (A.6) starts from the expression of the dynamic effective magnetic
field:

heff = h + (2A/M2)	m − (Hamx/M)x (A.7)

where, in the quasi-static approximation, the usual dynamic demagnetizing field h can be
written as

h = ∇ϕ. (A.8)

10
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The potential ϕ is related to m by:

	ϕ + 4π∇ · m = 0. (A.9)

It results from (A.8) and (A.9) that:

H = i(Qx x + Qzz)ϕ + ∂yϕy (A.10)

and that:

−Q2ϕ + ∂2
yϕ + 4π i(Qxmx + Qzmz)+ 4π∂ym y = 0. (A.11)

In the following, we use the notations:

[ f ] = f (d)− f (0)

and 〈 f 〉 = 1
d

∫ d
0 f (y) dy (averaged value of f over the film thickness). Thus:

〈h〉 = i(Qxx + Qzz)〈ϕ〉 + (1/d)[ϕ]y (A.12)

and:

−Q2〈ϕ〉 + (1/d)[∂yϕ] + 4π i(Qx〈mx 〉 + Qz〈mz〉)+ 4π(1/d)[m y] = 0. (A.13)

Noting by ψ the potential outside the film, the electromagnetic boundary conditions provide:

∂yϕ(d)+ 4πm y(d) = ∂yψ(d), ϕ(d) = ψ(d) (A.14)

and

∂yϕ(0)+ 4πm y(0) = ∂yψ(0), ϕ(0) = ψ(0). (A.15)

The potential ψ is a solution of:

−Q2ψ + ∂2
yψ = 0. (A.16)

Thus:

ψ = ψ1 exp(i(Qx x + Qzz)− Qy) for y > d (A.17)

and

ψ = ψ2 exp(i(Qx x + Qzz)+ Qy) for y < 0. (A.18)

It results from relations (A.14)–(A.18) that:

[∂yϕ] + 4π[m y] + Q(ϕ(d)+ ϕ(0)) = 0 (A.19)

and

(∂yϕ(d)+ ∂yϕ(0))+ 4π(m y(d)+ m y(0))+ Q[ϕ] = 0. (A.20)

We consider slightly varying dynamical quantities over the thickness and, consequently, we use
the approximation:

(m y(d)+ m y(0)) ≈ 2〈m y〉 (A.21)

(ϕ(d)+ ϕ(0)) ≈ 2〈ϕ〉 (A.22)

and, hence:

(∂yϕ(d)+ ∂yϕ(0)) ≈ 2〈∂yϕ〉 = (2/d)[ϕ]. (A.23)

The last three equations, combined with (A.13), (A.19) and (A.20), provide:

〈ϕ〉 = 4π i(Qx 〈mx 〉 + Qz〈mz〉)/(Q(Q + 2/d)) (A.24)

[ϕ] = −8π〈m y〉/(Q + 2/d). (A.25)

11
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Thus:

〈h〉 = −4π(Qxx + Qzz)(Qx 〈mx 〉 + Qz〈mz〉)/(Q(Q + 2/d))− 8π〈m y〉/(d Q + 2)y. (A.26)

Finally, the components of 〈heff〉 are:

〈heff,x 〉 = −4πQx(Qx 〈mx 〉 + Qz〈mz〉)/(Q(Q + 2/d))− Ha〈mx 〉/M − 2AQ2〈mx 〉/M2

〈heff,y〉 = −8π〈m y〉/(d(Q + 2/d))− 2AQ2〈m y〉/M2

〈heff,z〉 = −4πQz(Qx 〈mx 〉 + Qz〈mz〉)/(Q(Q + 2/d))− 2AQ2〈m y〉/M2.

(A.27)

Using these values in equation (A.5), one obtains the appropriate homogeneous system of linear
equations, which provides the eigenfrequency given in equation (A.6).
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